欢迎来到汇天科技有限公司! 服务流程联系我们

您的当前位置:汇天PCB抄板科技有限公司 > 技术资源 > 技术资料 > 浏览文章

心电采集系统中模拟电路的设计

 

    心电的主放大及滤波电路如图3 所示。由于检测信号中存在的主要干扰信号有电极板 与人之间的极化电压、50Hz 工频干扰、仪器内部噪声和仪器周围电磁场干扰等等。要想获 得清晰稳定的心电信号,滤波器的设计也很关键,特别是50Hz 的带阻滤波器尤其重要。采 集到的心电信号中,200Hz 以上的干扰信号较强,而0.05Hz 以下的干扰信号相对较弱,所 以在滤波电路中采取先低通滤波取出200Hz 以下的信号,然后通过接高通的方式,从而滤除 极化电压及高频干扰。在电路中U2B 及电阻、电容组成带通滤波器,同时使电路具有较高的 输入阻抗。滤波电路采用阻容耦合电路,输入阻抗高输出阻抗低,并且输入和输出之间具 有良好的隔离。其作用主要是隔去前置放大器的直流电压和直流极化电压,耦合心电信号。 为了保证心电信号不失真地耦合到下一级,必须耦合 RC。RC 乘积越大,放大器的低频响应 越好,但RC 的取值不能无限制加大,因为 R 值受输入阻抗的限制,C 值太大不但体积大, 漏电流增加还会引起漂移,同时还会延长回路充放电时间。人体的心电信号频率较低,用 RC 滤波电路可以有效地避免有源滤波电路中由于通用型集成运放的带宽较窄而不适用于高 频范围的缺陷。
    设计的放大器由两级组成,U1C 和U1D 构成第一级的差动输入输出级,U2A 为基本 型差动比例电路,总的电压增益Au,等于两级增益之积。由于第一级采用同相输入,有较 高的输入电阻,U1C 和U1D 选用相同特性的运放,使它们的共模输出电压和漂移电压也都相 等,再通过U2A 组成的第二级差分式电路,可以互相抵消,第二级差分放电路将双端输入变 单端输出,适应接地负载的需要。把两级电路级联后,它们相互取长补短,使组合后的这个 电路具有输入阻抗高、电压增益调节方便、共模抑制比高和漂移相互抵消等一系列优点。为 提高共模抑制比和降低温漂影响,进一步提高电路的性能,测量放大器采用对称结构,即严 格挑选几个外接电阻R10、R11、R12、R13、R14、R15、R16 和调节RW2,使得R11=R12、R13 =R14、R16=R15+调节后RW2。所以通过调节外接电阻RW2 的大小可以很方便地改变测量放大器的增益。
    去除人体携带的交流共模干扰的一种有效方法是采用右腿驱动电路,在本图2 的系统 中,电路板克隆右腿RL 端不是直接接地,而是接到放大器的输出端。从驱动屏蔽的输出端检出共模电 压,它经辅助的反向放大器U0 放大后,再经过电阻R1 反馈到右腿,由此而得到右腿驱动的 名称,即人体的位移电流不再流入地,而是流向R1 和辅助放大器U0 的输出端。但是由于右 腿驱动电路存在交流干扰电压的反馈环路,而可能有交流电流流经人体,成为不安全因素, 限流电阻不能很小,通常取1M 欧以上,即R1 在这里起安全保护作用,当病人与地之间出现 很高电压时,辅助放大器U0 饱和,右腿驱动电路不起作用,U0 等效于接地,因此电阻R1 这时就起限流保护作用。干扰信号送右腿驱动放大器进行反相放大,传到右腿驱动电极RL 对于干扰信号是一种深度的负反馈,它有效地削弱了人体上感应的共模干扰信号。
    从人体体表拾取的心电信号一般只有几个毫伏,为了提高其分辨率以便于后端显示和 处理,首先需要对信号进行放大。在心电信号采集过程中,前置放大电路对心电信号的影响 最大,为提高心电信号的性能,前置放大电路的放大倍数不能选择得太大(一般小于20), 否则会由于有较大的干扰信号(指电极的极化电压),致使放大器产生阻塞现象。
    对于心电信号而言,采集的信号属于差模信号,所以其放大器都采用差动放大电路结 构,使用最普遍的是采用低噪声、高输入阻抗、高共模抑制比、高增益和抗干扰能力强的同 相并联差动放大电路,即通常所说的三运放仪表放大器,本系统采用通用的集成运放LM324 来构成这种放大器的。LM324 是一种4 集成运算放大器,由于价格低廉且使用方便,所以被 广泛应用于控制和信号放大处理之中。我们在实验室认真设计和反复实验,用LM324 构成的 电路成功实现了心电信号的放大处理,其主要技术指标都能满足要求。LM324 既可以单电源 使用,也可以双电源使用,电源电压可以从+5V 一直用到±15 V,而且驱动功耗低,每一组 运放差模增益可达到100dB。通过外围电路的合理设计,使得以LM324 为主要器件的放大电 路完全能满足高放大倍数、高稳定性的心电信号放大处理要求。